Monthly Archives: March 2014

Can buses compete with trains?

20140316 Coach coloured

The bus-train from Liverpool to Cambridge (UK) whines quietly by at 90 mph. The journey of 192 miles will take under three hours, faster than trains or cars. It operates under computer control while the staff on board spend their time serving meals and coffees. 120 passengers enjoy the ride, watching TV and arriving relaxed. It uses roads that were built in the last century, with minor changes at junctions to accommodate these large vehicles.  There are no traffic queues because most people chose to use public transport rather than private cars.

The bus is electrically powered and its energy consumption per passenger is less than a tenth that of a diesel car. Its small energy consumption is consistent with the use of renewable energy sources, so it is effectively zero-carbon.

Across the world, bus-trains operate where there are no direct railway lines. On other routes they compete with trains and provide pressure to reduce ticket prices and improve services. They stop at new bus stations at the side of major roads. People use local buses, trams, trains or short-range electric cars to access these stations.

Why can’t this be done now? It is already starting to happen. Long-range electric buses have already been developed and will become more practical as batteries and fuel cells improve. Batteries can be used for buses for journeys of up to perhaps 200 miles, hydrogen fuel cells will permit longer ranges.

Articulated or bendy buses are already common in many cities, and fast articulated buses have been built. Buses are becoming more luxurious, for example some recent  buses have are fitted with personal entertainment systems and internet access.

Automatic control is being demonstrated for cars, and computer control should be easier for buses that follow simple routes on major highways. The system will cut operating costs and allow long journeys without rest breaks. By 2050 automatic control may be mandatory to cut the risk of human error and to provide a rapid and predictable response to problems.

What is needed technically is simply accelerated development and testing to set safety standards. There will also be a need for politicians to change legislation,  provide incentives, and make the required infrastructure changes. Finally there will be a need for personal tax changes to ensure that excessive use of fossil fuels is prevented, since that will drive the use of low energy systems such as this.

 

 

Can we make Bus travel more energy efficient?

Buses 2050
Buses 2050

 

Jim has a beer in the centre of his town. The beer is local, brewed the same way for 200 years. The buses also look fairly conventional, but the truth is that they are 5 times more efficient than buses in the old days – for example in 2014.

Some of that improvement comes from their engineering. Most of it however comes from how they are operated. In 2014 buses simply drove around to a schedule and people waited at bus stops. Sometimes the bus was full, and people got annoyed. Mostly the buses operated nearly empty. In 2050 all that has changed.

Jim will need a bus home. He reckons it will take him 15 minutes to finish his beer and mentions it to Pat, his electronic assistant. Pat comes back in 30 seconds and tells him the bus will arrive in 19 minutes and he has seat 25. The bus comes as predicted.

The main reason that the bus is so energy efficient is that it is nearly full. In 2014 buses in the UK operated with only 9 passengers on average. Most countries operated with similarly inefficient bus systems. Buses were more efficient than cars in terms of emissions per passenger kilometre, but the difference was not huge. In 2050 buses carry 30 passengers on average. The bulk of the efficiency improvement comes from that fact alone.

How is it done? Everyone signals the journeys that they want to make. Buses are sent when there is demand. Sometimes two or three buses must be used. They link together where routes intersect, and people transfer as in the picture above.

The bus company computer controls the buses. The roads are much less congested because far fewer journeys are made by car, so bus arrival times are predictable. There is much heavier demand for buses so they can operate frequently.

What if Jim needs to leave urgently and there is insufficient demand for a bus right now? Pat will scan the options and come up with the best. Jim may have to pay more, and incur greater environmental damage perhaps by using an electric taxi for part of the journey. If so he will pay extra Q tax. But that an unlikely event. Public transport can normally get Jim everywhere he needs to go, at the time he needs to travel.

Shouldn’t the buses be streamlined? These are slow buses for use in town only. I’ll show long distance buses soon.

p.s I apologise for not posting for a few weeks, I had some projects to complete. Note also that even in 2014 it makes environmental sense to use a bus. It will run whether you use it or not, and if you use it the extra fuel burned will be negligible. In contrast if you take the car, however efficient it is, significant extra fuel will certainly be used.